HEMOPTYSIS

 ESSENTIAL INQUIRIES

Smoking history.
Fever, cough, and other symptoms of lower respiratorytract infection.
Nasopharyngeal or gastrointestinal bleeding.
Chest radiography and complete blood count.

General Considerations

 

Hemoptysis is the expectoration of blood that originates below the vocal cords. It is commonly classified as trivial, mild, or massive—the latter defined as more than 200–600 mL (about 1–2 cups) in 24 hours. The dividing lines are arbitrary, since the amount of blood is rarely quantified with precision. Massive hemoptysis can be usefully defined as any amount that is hemodynamically significant or threatens ventilation, in which case the initial management goal is not diagnostic but therapeutic.

The lungs are supplied with a dual circulation. The pulmonary arteries arise from the right ventricle to supply the pulmonary parenchyma in a low-pressure circuit. The bronchial arteries arise from the aorta or intercostal arteries and carry blood under systemic pressure to the airways, blood vessels, hila, and visceral pleura. Although the bronchial circulation represents only 1–2% of total pulmonary
blood flow, it can increase dramatically under conditions of chronic inflammation—eg, chronic bronchiectasis— and is frequently the source of hemoptysis.

The causes of hemoptysis can be classified anatomically. Blood may arise from the airways in COPD, bronchiectasis, and bronchogenic carcinoma; from the pulmonary vasculature in left ventricular failure, mitral stenosis, pulmonary embolism, idiopathic pulmonary arterial hypertension, and arteriovenous malformations; or from the pulmonary parenchyma in pneumonia, inhalation of crack cocaine, or granulomatosis with polyangiitis (formerly Wegener granulomatosis). Diffuse alveolar hemorrhage is due to small vessel bleeding usually caused by autoimmune or hematologic disorders and results in alveolar infiltrates on chest radiography. Most cases of hemoptysis presenting in the outpatient setting are due to infection (eg, acute or chronic bronchitis, pneumonia, tuberculosis). Hemoptysis due to lung cancer increases with age, accounting for up to 20% of cases among the elderly. Less commonly (< 10% of cases), pulmonary venous hypertension (eg, mitral stenosis, pulmonary embolism) causes hemoptysis. Most cases of hemoptysis that have no visible cause on CT scan or bronchoscopy will resolve within 6 months without treatment, with the notable exception of patients at high risk for lung cancer (smokers older than 40 years). Iatrogenic hemorrhage may follow transbronchial lung biopsies, anticoagulation, or pulmonary artery rupture due to distal placement of a balloon-tipped catheter. No cause is identified in up to 15–30% of cases.

Clinical Findings

A. Symptoms

Blood-tinged sputum in the setting of an upper respiratory tract infection in an otherwise healthy, young (age < 40 years) nonsmoker does not warrant an extensive diagnostic evaluation if the hemoptysis subsides with resolution of the infection. However, hemoptysis is frequently a sign of serious disease, especially in patients with a high prior probability of underlying pulmonary pathology. One should not distinguish between blood-streaked sputum and cough productive of blood alone with regard to the evaluation plan. The goal of the history is to identify patients at risk for one of the disorders listed above. Pertinent features include past or current tobacco use, duration of symptoms, and the presence of respiratory infection. Nonpulmonary sources of hemorrhage from the nose or the gastrointestinal tract should also be excluded.

B. Physical Examination

Elevated pulse, hypotension, and decreased oxygen saturation suggest large volume hemorrhage that warrants emergent evaluation and stabilization. The nares and oropharynx should be carefully inspected to identify a potential upper airway source of bleeding. Chest and cardiac examination may reveal evidence of CHF or mitral stenosis.

C. Diagnostic Studies

Diagnostic evaluation should include a chest radiograph and complete blood count. Kidney function tests, urinalysis, and coagulation studies are appropriate in specific circumstances. Hematuria that accompanies hemoptysis may be a clue to Goodpasture syndrome or vasculitis. Flexible bronchoscopy reveals endobronchial cancer in 3–6% of patients with hemoptysis who have a normal (non-lateralizing) chest radiograph. Nearly all of these patients are smokers over the age of 40, and most will have had symptoms for more than 1 week. Bronchoscopy is indicated in such patients. High-resolution chest CT scan complements bronchoscopy and should be strongly considered in patients with normal chest radiograph and low risk for malignancy. It can visualize unsuspected bronchiectasis and arteriovenous malformations and will show central endobronchial lesions in many cases. High-resolution chest CT scanning is the test of choice for suspected small peripheral malignancies. Helical CT pulmonary angiography has become the initial test of choice for evaluating patients with suspected pulmonary embolism, although caution should be taken to avoid large contrast loads in patients with even mild chronic kidney disease (serum creatinine > 2.0 g/dL or rapidly rising creatinine in normal range). Helical CT scanning can be avoided in patients who are at “unlikely” risk for pulmonary embolism using the Wells clinical decision rule and who have a normal sensitive D-dimer test.

Treatment

The management of mild hemoptysis consists of identifying and treating the specific cause. Massive hemoptysis is life-threatening. The airway should be protected with endotracheal intubation, ventilation ensured, and effective circulation maintained. If the location of the bleeding site is known, the patient should be placed in the decubitus position with the involved lung dependent. Uncontrollable hemorrhage warrants rigid bronchoscopy and surgical consultation. In stable patients, flexible bronchoscopy may localize the site of bleeding, and angiography can embolize the involved bronchial arteries. Embolization is effective initially in 85% of cases, although rebleeding may occur in up to 20% of patients over the following year. The anterior spinal artery arises from the bronchial artery in up to 5% of people, and paraplegia may result if it is inadvertently cannulated.

When to Refer

  • When bronchoscopic evaluation of lower respiratory tract is required, refer patients to a pulmonologist.
  • Patients should be referred to an otolaryngologist for evaluation of upper respiratory tract bleeding source.
  • Patients with severe coagulopathy complicating management should be referred to a hematologist.

When to Admit

  • To stabilize bleeding process in patients at risk for or experiencing massive hemoptysis.
  • To correct disordered coagulation (clotting factors or platelets, or both).
  • To stabilize gas exchange.







No comments:

Post a Comment